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A New Finite-Difference Time-Domain
Algorithm For Solving
Maxwell’s Equations

Zhigiang Bi, Keli Wu, Chen Wu, and John Litva

Abstract—A new algorithm is presented for deriving finite-
difference time-domain (FD-TD) solutions of Maxwell’s equa-
tions. When compared with Yee’s method, it is found that the
stability conditions for this method exceed those of Yee’s method
by the factors 1.41 and 1.73, respectively, for the two-dimen-
sional and three-dimensional cases. Two additional important
advantages of the method are given in the conclusions.

I. INTRODUCTION

O DATE, Yee’s FD-TD method has received a great

deal of attention because it has a number of desirable
attributes, such as the ability to analyze the complex mi-
crostrip antenna structures [2]. Recently, several other time
domain methods have been presented. They have been devel-
oped to overcome the rectangular lattice limitation of the
method. These include finite element derived methods [3] and
a point-matched time domain finite element method [4]. All
of these new methods make use of the conforming ability of
the finite-element method to approximate physical boundaries
more accurately.

This letter proposes a modified form of the finite-difference
algorithm, with a stability condition which exceeds that of
Yee’s FD-TD method. As well, this method has several other
advantages. The main issues underlying this technique are
presented in the following sections.

II. DESCRIPTION OF THE NEW ALGORITHM

For ease of understanding, we introduce the algorithm by
describing the two-dimensional case, and assume TM wave
propagation. Under these conditions, Maxwell’s equations
become
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The equations can be expressed in the finite-difference form
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by using a new algorithm, which is analogous to the rotated
Richtmyer algorithm [5], [6]. For example, the first takes the
form: :
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The lattice used for implementing the proposed algorithm is
shown in Region A of Fig. 1. It differs from the conventional
lattice used for Yee’s method, which is shown in Region B of
Fig. 1. From (4), we can see that the scheme consists of two
steps. The first step consists of finding average values for the
components of the fields on fictitious nodes such as those at
p, p’ and q, q'. During the second step one uses the values
obtained in the first step to derive the centered difference
approximation to Maxwell’s equations. This method is very
compatible with Yee’s method. The results from a numerical
experiment are given in the following section to demonstrate
the advantages of this technique.

III. ACCURACY AND STABILITY OF THE METHOD

It can be proven [7] that, when we use the new scheme to
approximate a differential equation, the principal part of the
local truncation error due to the finite differences approaches
zero with the second order of the mesh lengths A¢ and A.
Hence, the new algorithm is of second order accuracy. Using
a method similar to that used by Wilson {5], it is proven [7]
that the new scheme is stable if

C(AA;) <1, (s)

where ¢ is the velocity of propagation, and Ax = A y. This
stability criterion is independent of the number of dimensions
if the computational grid is uniform. This invariance with the
dimensions of the problems is considered to be an advantage
of our algorithm because it is not enjoyed by Yee’s tech-
nique. Yee’s stability condition depends on the number of
dimensions as
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Fig. 1. FD-TD two-dimensional lattice showing TM field placement.

We have carried out a numerical experiment to test the
stability condition given by (5), as well as to check the
validity of the new algorithm. An H-plane rectangular wave-
guide is chosen as the example [8] for our computation,
where the excitation that is used on the excitation plane
consists of a monochromatic dominant TE,; mode wave of
unit amplitude. Both Yee’s method and the new method have

been applied to this problem. The stability factor, defined by
c(At

p= (A ) , is assumed to 0.70 and 0.990, respectively, for
X

the former and latter algorithms. A comparison of the results
obtained using these two techniques is given in Fig. 2. The
quantity that is being compared is the E,_ field at a reference
point. It is readily seen that at iteration 800 the new technique
provides results covering a greater amount of time than the
old technique. It is in this sense that the new method is
considered to be more efficient than Yee’s method. Another
computation was carried out to test the stability conditions for
Yee’s method and the new method, respectively. The results
show that once the stability factor exceeds 0.7071068, Yee’s
method begins to diverge. But, in the case of the new
method, the algorithm does not start to diverge until the value
of stability factor exceeds 1. In Fig. 3 is given the compatibil-
ity testing result of the new method and Yee’s method. In this
test, the waveguide, as was the case in Fig. 1, consist of two
regions, A and B. In Region A, we use the new scheme, and
in Region B, we use the Yee’s method. The field is sampled
in Region B. From this figure, we can see that the two
methods are very compatible.

IV. TaE RELATIONSHIP BETWEEN THE FINITE-ELEMENT
DEeriVED TiME-DomaIN METHODS (FE-TD) AND THE
New FD-TD METHOD

It is shown [7] that the finite-element derived time-domain
method [4], defined over a rectangular subspace and formu-
lated using isoparametric functions, is equivalent to the new
finite-difference time-domain method.

V. CONCLUSION

A new finite-difference time-domain algorithm for solving
Maxwell’s differential equations is presented. The accuracy
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Fig. 2. Efficiency comparison of Yee’s method and the new method.
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Fig. 3. Compatibility of the new method and the Yee’s method.

of this new algorithm is the same as Yee’s method, i.e.,
second order accuracy in both the time and space domains.
The most important advanatge of the method, compared with
the Yee’s conventional method, is in the value of its stability
condition. The stability condition for the new FD-TD ex-
ceeds that for Yee’s method by factors 1.4 and 1.73 for the
two-dimensional and three-dimensional cases, respectively.
As well, there are two other important advantages of this
method.

First, the method is compatible with both Yee’s FD-TD
method and the recently developed finite-element time-do-
main method. With the help of the new method, the conven-

" tional FD-TD and the newer FE-TD methods can be unified.

One immediate benefit that can be realized from unifying the
FD-TD and FE-TD is that the conforming boundary element
method presented by Cangellaris [4] can be simplified in the
following manner: near the structure, quadrilateral elements
are used to conform the physical boundary, but away from
the structure, the conventional grid of Yee’s method is used.

Second, the new FD-TD method will provide greater
flexibility for formulating and studying the multigrid method,
variable mesh method and the method of finite difference
approximations of the boundary conditions. Further work on
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these improvements to the FD-TD technique will be carried
out in the near future.

Before concluding, it should be mentioned that although
the stability condition for the new FD-TD technique is con-
siderably improved over that of Yee’s method, the total
computation efficiencies of the two methods are almost the
same on most current computers. With the development of
parallel computation, the new method has strong potential for
increasing the efficiency of FD-TD methods because it re-
quires fewer time steps in solving a particular problem, i.e.,
less communication is required.
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