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A New Finite-Difference Time-Domain

Algorithm For Solving

Maxwell’s Equations
Zhiqiang Bi, Keli Wu, Chen Wu, and John Litva

Abstract—A new algorithm is presented for deriving finite-

difference time-domain (FD-TD) solutions of Maxwell’s equa-

tions. When compared with Yee’s method, it is found that the

stability conditions for this method exceed those of Yee’s method
by the factors 1.41 and 1.73, respectively, for the two-dimen-

sional and three-dimensional cases. Two additional important
advantages of the method are given in the conclusions.

I. INTRODUCTION

T O DATE, Yee’s FD-TD method has received a great

deal of attention because it has a number of desirable

attributes, such as the ability to analyze the complex mi-

crostrip antenna structures [2], Recently, several other time

domain methods have been presented, They have been devel-

oped to overcome the rectangular lattice limitation of the

method. These include finite element derived methods [3] and

a point-matched time domain finite element method [4]. All

of these new methods make use of the conforming ability of
the finite-element method to approximate physical boundaries

more accurately.

This letter proposes a modified form of the finite-difference

algorithm, with a stability condition which exceeds that of

Yee’s FD-TD method. As well, this method has several other

advantages. The main issues underlying this technique are

presented in the following sections.

II. DESCRIPTION OF THE NEW ALGORITHM

For ease of understanding, we introduce the algorithm by

describing the two-dimensional case, and assume TM wave

propagation. Under these conditions, Maxwell’s equations

become
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The equations can be expressed in the finite-difference form
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by using a new algorithm, which is analogous to the rotated

Richtmyer algorithm [5], [6]. For example, the first takes the

form:

At
H“++(i, j) = H;-i(i, j) – ~

x

1
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The lattice used for implementing the proposed algorithm is

shown in Region A of Fig. 1. It differs from the conventional

lattice used for Yee’s method, which is shown in Region B of

Fig. 1. From (4), we can see that the scheme consists of two

steps. The first step consists of finding average values for the

components of the fields on fictitious nodes such as those at

p, p’ and q, q’. During the second step one uses the values
obtained in the first step to derive the centered difference

approximation to Maxwell’s equations. This method is very

compatible with Yee’s method. The results from a numerical

experiment are given in the following section to demonstrate

the advantages of this technique.

III. ACCURACY AND STABILITY OF THE METHOD

It can be proven [7] that, when we use the new scheme to

approximate a differential equation, the principal part of the

local truncation error due to the finite differences approaches

zero with the second order of the mesh lengths At and h.

Hence, the new algorithm is of second order accuracy. Using

a method similar to that used by Wilson [5], it is proven [7]

that the new scheme is stable if

c(At) < ~

Ax–’
(5)

where c is the velocity of propagation, and A x = A y. This

stability criterion is independent of the number of dimensions

if the computational grid is uniform. This invariance with the

dimensions of the problems is considered to be an advantage

of our algorithm because it is not enjoyed by Yee’s tech-

nique. Yee’s stability condition depends on the number of

dimensions as

CA t 1

Ax ‘L’
(6)
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Fig. 1. FD-TD two-dimensional lattice showing TM field placement.

We have carried out a numericrd experiment to test the

stability condition given by (5), as well as to check the

validity of the new algorithm. An H-plane rectangular wave-

guide is chosen as the example [8] for our computation,

where the excitation that is used on the excitation plane

consists of a monochromatic dominant TE ~0 mode wave of

unit amplitude. Both Yee’s method and the new method have

been applied to this problem. The stability factor, defined by
c(At)

P=y, is assumed to 0.70 and 0.990, respectively, for

the for;~r and latter algorithms. A comparison of the results

obtained using these two techniques is given in Fig. 2. The

quantity that is being compared is the Ez field at a reference

point. It is readily seen that at iteration 800 the new technique

provides results covering a greater amount of time than the

old technique. It is in this sense that the new method is

considered to be more efficient than Yee’s method. Another

computation was carried out to test the stability conditions for

Yee’s method and the new method, respectively. The results

show that once the stability factor exceeds 0.7071068, Yee’s

method begins to diverge. But, in the case of the new

method, the algorithm does not start to diverge until the value

of stability factor exceeds 1. In Fig. 3 is given the compatibil-

ity testing result of the new method and Yee’s method. In this

test, the waveguide, as was the case in Fig. 1, consist of two

regions, A and B. In Region A, we use the new scheme, and

in Region B, we use the Yee’s method. The field is sampled

in Region B. From this figure, we can see that the two

methods are very compatible.

IV. THE RELATIONSHIP BETWEEN THE FINITE-ELEMENT

DERIVED TIME-DOMAIN METHODS (FE-TD) AND THE

NEW FD-TD METHOD

It is shown [7] that the finite-element derived time-domain

method [4], defined over a rectangular subspace and formu-

lated using isoparametric functions, is equivalent to the new

finite-difference time-domain method.

V. CONCLUSION

A new finite-difference time-domain algorithm for solving

Maxwell’s differential equations is presented. The accuracy

Efficiency compa.rision, Iteration number n=800
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Fig. 2. Efficiency comparison of Yee’s method and the new method.
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Fig. 3. Compatibility of the new method and the Yee’s method.

of this new algorithm is the same as Yee’s method, i.e.,

second order accuracy in both the time and space domains.

The most important advanatge of the method, compared with

the Yee’s conventional method, is in the value of its stability

condition. The stability condition for the new FD-TD ex-

ceeds that for Yee’s method by factors 1.4 and 1.73 for the

two-dimensional and three-dimensional cases, respectively.

As well, there are two other important advantages of this

method.

First, the method is compatible with both Yee’s FD-TD

method and the recently developed finite-element time-do-

main method. With the help of the new method, the conven-

tional FD-TD and the newer FE-TD methods can be unified.

One immediate benefit that can be realized from unifj’ing the

FD-TD and FE-TD is that the conforming boundary element

method presented by Cangellaris [4] can be simplified in the
following manner: near the structure, quadrilateral elements

are used to conform the physical boundary, but away from

the structure, the conventional grid of Yee’s method is used.

Second, the new FD-TD method will provide greater

flexibility for formulating and studying the multigrid method,

variable mesh method and the method of finite difference

approximations of the boundary conditions. Further work on



384 IEEE MIcROwAVE AND GUIDED WAVE LETTERS, VOL. I, NO. 12, DECEMBER 199I

these improvements to the FD-TD technique will be carried

out in the near future.

Before concluding, it should be mentioned that although

the stability condition for the new FD-TD technique is con-

siderably improved over that of Yee’s method, the total

computation efficiencies of the two methods are almost the

same on most current computers. With the development of

parallel computation, the new method has strong potential for

increasing the efficiency of FD-TD methods because it re-

quires fewer time steps in solving a particular problem, i.e.,

less communication is required.
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